Range of Symmetric Matrices over GF (2)

نویسنده

  • Yuval Filmus
چکیده

We prove that the range of a symmetric matrix over GF (2) always contains its diagonal. This is best possible in several ways, for example GF (2) cannot be replaced by any other field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS

We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...

متن کامل

Binary Symmetric Matrix Inversion Through Local Complementation

We consider the Schur complement operation for symmetric matrices over GF(2), which we identify with graphs through the adjacency matrix representation. It is known that Schur complementation for such a matrix (i.e., for a graph) can be decomposed into a sequence of two types of elementary Schur complement operations: (1) local complementation on a looped vertex followed by deletion of that ver...

متن کامل

Closeness Coefficients between Euclidean-Embeddable Homologous Configurations

Measurement of closeness between homologous configurations is often of interest. For configurations that can be embedded onto the Euclidean space, we attempted to develop closeness coefficients between corresponding Euclidean coordinate matrices. A suitable closeness coefficient was required to satisfy the following five properties: 1) It must range between 0 and 1; 2) It must be invariant over...

متن کامل

On generalized Hadamard matrices of minimum rank

Generalized Hadamard matrices of order qn−1 (q a prime power, n ≥ 2) over GF (q) are related to symmetric nets in affine 2-(qn, qn−1, (qn−1 − 1)/(q − 1)) designs invariant under an elementary abelian group of order q acting semi-regularly on points and blocks. The rank of any such matrix over GF (q) is greater than or equal to n− 1. It is proved that a matrix of minimum q-rank is unique up to a...

متن کامل

A Class of Non Invertible Matrices in GF (2) for Practical One Way Hash Algorithm

In this paper, we describe non invertible matrix in GF(2) which can be used as multiplication matrix in Hill Cipher technique for one way hash algorithm. The matrices proposed are permutation matrices with exactly one entry 1 in each row and each column and 0 elsewhere. Such matrices represent a permutation of m elements. Since the invention, Hill cipher algorithm was used for symmetric encrypt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010